
I AL-TP-1 991-0020

AD-A236 211

AR
M HIERARCHICAL MODELING AND PROCESS

S AGGREGATION IN OBJECT-ORIENTED SIMULATION

T DTIC
R .,IEL.ECTE
N Douglas A. Popken, Capt, USAF B
G HUMAN RESOURCES DIRECTORATE

LOGISTICS RESEARCH DIVISION
Wright-Patterson Air Force Base, OH 45433-6503

L
A
B May 1991

0 Interim Technical Paper for Period January 1990 - March 991

R
A
T
0 Approved for public release; distribution is unlimited.
R
Y

1 4 459- 59

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5000

NOTICES

This technical paper is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation; or as conveying any rights or permission
to manufacture, use, or sell any patented invention that may in any way be related
thereto.

The Office of Public Affairs has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

DOUGS A. POPKEN, ,pt, USAF BERTRAM W. CREAM, Technical Director
Project Scientist Logisitics Research Division

J M S C CLARK, Colonel, USAF
Ch*e, Logistics Research Division

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public repomng burden for this collection of informion is estimated to average I hor F including the time fo e w wing instuctions, searching exisng data sources, gthen
ad maintamning te das needed, and completing and revewmng the collectlor of i on n comments regarding hii burden estimate or any other aspect of this collection at
nfornaton, including su one for reducing this burder, to Washington Headuarters Sennces. Directorate for Information Operations and Re 1215 Jefferson Davis Highway, Suits12;04. Arlington. VA 20-.4302. and to the Offce of Management arid Su.'get Papoerwork RedKuction Project 10704-0188), Waslhington. DC 2 3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED
. May 1991 Interim Paper-Jauary 1990- March 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Hierarchical Modeling and Process Aggregation in Object-Oriented PE - 62205F
Simulation PR - 1710

TA - 00

6. AUTHOR(S) WU - 18
Douglas A. Popken

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION

Armstrong Laboratory REPORT NUMBER

Human Resources Directorate AL-TP-1 991-0020
Logistics Research Division
Wright-Patterson Air Force Base, OH 45433-6503

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of this research was to develop techniques for more easily building simulation models with
resolution levels appropriate for their purpose. The basic premise was that a modular, hierarchical modeling
approach would be best suited to accomplish this and that object-oriented programming techniques would be a
primary enabling technology. Within the proposed hierarchical modeling framework, submodels may be
represented in either their original form or in an aggregated form, the choice being governed by the goals and
constraints of a particular simulation study. In this paper a prototype hierarchical modeling system supporting
aggregation is presented. The prototype was coded in the SMALLTALK-80 object-oriented programming
environment, and is tailored to an airbase logistics application. The paper also discusses several possible
approaches to aggregation, concluding that the "simulative approach" is most appropriate for this application.

14. SUBJECT TERMS 15. NUMBER OF PAGES

aircraft maintenance logistics planning 32
artificial intelligence simulation 16. PRICE CODE
high-level languages

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-20-550F 2 v 2-014

P ried y ANI S. Z39-1-8

PREFACE

The research described in this paper was performed in-house at the Logistics and Human

Factors Division of the Air Force Human Resources Laboratory. It was designed to

support the Productivity Improvements in Simulation Modeling (PRISM) project, a long-

term effort to enhance the Air Force's ability to evaluate, through simulation, how differing

logistical support scenarios may constrain sortie generation capability. Currently, the

primary research being done under PRISM is the Integrated Model Development

Environment contract effort.

Programming assistance for the SMALLTALK-80 TM based prototype described in this

paper was provided by Michelle Bagley of Systems Research Laboratories. Ms. Bagley

was responsible for coding the "Network" objects and methods as well as the set of objects

and methods needed to integrate the data from the simulative pre-analysis with the

prototype simulation environment.

Accession For

NTIS GRA&I
DTIC TAB "
Unaniounced
IJuti cation

By--
Distr buttoa/

Avallability Codes

Av-ail ani/or
iDist. Special

iii

SUMMARY

The paper begins by introducing a modular, hierarchical approach for object-oriented simulation of

complex problem domains. The advantages of this approach include enhanced modeling

consistency across different levels of resolution and increased modeling productivity. A major part

of the research was to allow submodels within the hierarchy, typically represented by networks, to

be modeled in either their original form or in an aggregated form, the choice being determined by

the goals and constraints of a particular simulation study. This capability would enhance the

reuseability of models, foster better understanding of the processes being modeled, increase

computational efficiency, and enable more selective recording of model outputs.

The paper then discusses several possible techniques for aggregating networks, including

analytical techniques for product-form networks, approximate techniques, numerical techniques,

and simulative analysis. The simulative aggregation technique was chosen for the prototype

simulation environment for two main reasons: the need to extract complex data from the network

being aggregated, and the desire to tightly couple the network aggregation/analysis with the

simulation environment.

Lastly, the paper outlines the design of a prototype hierarchical modeling system. The prototype

was coded in the SMALLTALK-80 TM object-oriented programming environment and is tailored to

an airbase logistics application. The application focuses on base-level maintenance of aircraft and

their constituent parts. The sequences of maintenance activities (task networks) for either

individual parts or the aircraft may be aggregated.

iv

Hierarchical Modeling and Process Aggregation in Object-Oriented Simulation

I. INTRODUCTION

Discrete-event simulations typically model a problem domain in terms of "active" simulation

entities whose behavior may be described in terms of various activities in time sequence. In this

type of simulation, the possible sequences of activities for an active entity, its "flow of events," can

be represented as an activity network. Each node in such a network represents an activity, while

the arcs represent the possible transitions to succeeding activities (Figure 1). The actual transition

made during the simulation may be dependent on any combination of logical or probabilistic

preconditions. The activity has duration, possibly probabilistic, during which "passive" resources

may be occupied, expended, or created, or during which interaction with other simulation entities

may occur.

Activity

Transition
SimulationS Entity

Figure Activity Network

This network based "world view" has been implemented in simulation systems such as

SIMNET H1 (Taha, Taylor, & Younis; 1990), Network 11.5 (Garrison, 1990), and SLAM II

(O'Reilly & Whitford, 1990). It is also consistent with the "process-oriented" approach to

discrete-event simulation described in Franta (1977). In the process-oriented approach, the entity

and its associated activity network are considered a "process" which competes with other

processes for simulation resources.

Activity networks can be organized into hierarchies to simplify modeling of complex problem

domains. The levels of the hierarchy would then represent different levels of problem resolution,
with the topmost level representing the least detail, and the bottom level representing the greatest
detail. As shown in Figure 2, what is a network at one level, is represented as a single node at the
next higher level.

/ \

Figure 2. A Hierarchy of Activity Networks

The advantages of a hierarchical approach are enhanced modeling consistency across different
levels of resolution and increased modeling productivity. Productivity increases arise from the
ability to use modular, pretested components (networks) in model development. Simulations may
then be rapidly reconfigured for use as prescriptive models of design alternatives or descriptive
models of differing aspects of a single given problem domain. The theoretical foundations for the

modular, hierarchical simulation approach may be found in Ziegler (1984).

2

This paper describes an object-oriented implementation of a modular hierarchical modeling

framework. Object-oriented software provides support for hierarchical structuring of model

components through both class-subclass and part-whole relationships (Coad & Yourdon, 1990).
In the approach to be described, the networks and their constituent nodes are represented as
"objects." The encapsulation property of object-oriented programming provides a way to achieve

the desired modularity. The object-oriented property of polymorphism reinforces this notion by
allowing active simulation entities to interact with nodes (aggregated networks) or networks

identically, that is, without knowledge of their actual internal structure.

The paper also describes the relationships between a process (network) and its corresponding

higher level representation (node). As in Fishwick (1986), we distinguish between two types of

relationships: aggregation and abstraction. In aggregation, the assumption is made that detailed
knowledge about a process (i.e., its lowest level representation in the hierarchy) is already known.

Mathematically based techniques are then used to obtain an aggregated version of the process
which is less detailed than but mathematically consistent with--at least in an approximate sense--the

original version of the process. The features of a network that must be aggregated will generally

depend on the problem domain. However, we assume here that resource interactions strictly
within the network are not retained; otherwise we might just as well use the detailed network

model. In general, aggregation will be feasible as long as meaningful consistency criteria are

maintained between levels of aggregation (Rothenberg, Narain, Steeb, Hefley, & Shapiro; 1989).

For many problems, it suffices to obtain an aggregate measure of the traversal time of a network by

a simulation entity. Section II will describe a general approximate technique for temporal

aggregation of an activity network via preprocessing activities; that is, there is no "automatic"

aggregation at run time.

In abstraction, on the other hand, we derive the higher level representation from observed or

known high-level system characteristics rather than from mathematical transformations upon the

detailed simulation. This approach allows the layers to differ both conceptually, and in their

representation (Fishwick, 1986). While the software implementation of this approach is fully
supported by the hierarchical framework described here, specific abstraction techniques tend to be

application-specific and are beyond the scope of this paper.

The purpose of having the capability to abstract or aggregate is to provide simulation models

whose resolution is appropriate for the problem being studied. This would enhance the reusability

of models, foster better understanding of the processes being modeled, increase computational

efficiency, and enable more selective recording of simulation outputs.

3

As an illustration, consider a modeler who is only concerned with some subset of a simulation

entity's possible activities within a given problem domain. If we think of the hierarchical

framework as a union of all relevant ways to model the sequence of activities a simulation entity

may traverse, then selecting the design of a particular simulation model implementation is

analogous to choosing a particular path through the hierarchy. Path selection is defined here as

determining for each node whether a simulation entity will traverse the node or its more detailed

(lower level) representation. The design (path) is chosen by the designer according to the type of

information the simulation is to present. While complex simulations may have some processes

modeled at a detailed level with others modeled at a higher level of abstraction, the level(s) of detail

is(are) typically decided early in the design phase and can only be varied later with a great deal of

reprogramming effort. Obviously, the mixture of modeling detail levels appropriate for one study

may be totally inappropriate for another. In such cases it would be desirable to have the ability to

select a design (path) from an existing framework, rather than designing an entirely new simulation

model. The path would be selected according to the circumstances (criticality, time constraints,

available computing resources, etc.) of the particular study.

4

II. AGGREGATION TECHNIQUE

A key difficulty in network aggregation is ensuring the time required for an entity to traverse the

aggregated network is approximately the same as it would be in the original network. This is
especially true if we seek to retain in the aggregate an entire network traversal time distribution and
not just its mean. Several factors make this difficult. First, we must account for the affects of
congestion and the resulting waiting times on network traversal times. In the absence of
congestion, the network traversal time distribution could otherwise be computed as a mathematical
convolution of the service time distributions at each node. Second, we make no prior simplifying
assumptions about the form of the probability distributions at the nodes; this precludes the use of

powerful analytical techniques applicable only to special classes of networks and distributions.
Before addressing these difficulties, we will discuss the possible approaches to aggregation and

show how they relate to the approach of this paper.

There are four basic approaches to network aggregation (Buchholz, 1989): 1) analytical
techniques for product form queuing networks, 2) approximate techniques, 3) numerical

techniques, and 4) simulative analyses.

Product form queuing networks (i.e., networks in which the state space satisfies local balance)
can be aggregated into single composite queues. The theoretica' basis for this aggregation,
Norton's Theorem, was first extended to include queuing networks by Chandy, Herzog, & Woo

(1975). The extended version of the theorem states that it is possible to aggregate a queueing
network into a single composite queue with appropriate service rates such that the original network

and the composite queue have identical affects on their environment. However, while in our
application we can not assume product-form queuing networks, the technique for aggregating

product-form queuing networks provides some insight into possible techniques for aggregating

more general networks.

As an illustration of the aggregation of product-form networks, consider the closed network of
queues, G (an open network can be converted into an equivalent closed network by adding
"dummy nodes"--nodes having a service time of 0--and by adding a return arc from last node to

first node), shown in Figure 3.

5

2dummy node

return arc

n 1 2 3

Throughput rate = .167 .273 .343

Eigu.LL3 Closed Queuing Network1

Assume local balance is satisfied and service rates at each node are as given. Norton's theorem

allows us to construct an equivalent composite queue, G' (Figure 4), with service rate T(n), where

n is the number of customers in the composite queue (n = 0,1,2,...N). T(n) is set to the steady

state service rate of network G when n customers are present.

G'

Queue size = 1 21 3

Service rate = .167 .273 .343

FigureA4 Composite Queue

1 The throughput rates result from a state-space approach, where the state is defined
as the number of entities at each node of the network. The marginal probability of
each state was calculated using a Markov process simulator. The network throughput
rate is found by calculating the expected transition rate on the return arc.

6

Approximate analytical techniques, including diffusion and iterative techniques, have been

devised to analyze more general networks that do not satisfy local balance (Marie, 1979). For

some classes of non-product form networks, approximate techniques have been shown to be
relatively accurate and efficient. However, from a practical standpoint, the major drawback to

these approaches is that they would require a large development effort to program sophisticated and

complex algorithms that must also interface with the simulation environment. This would be

complicated by the fact that computer languages are rarely suitable for both object-oriented

simulation and complex mathematical analyses. However, it would be desireable to have any

preprocessing analysis/aggregation tightly coupled with the simulation environment.

Numerical techniques are those that perform a numerical evaluation of the global balance

equations (the input-output equations in the state space). Solving these equations produces the

state probabilities. Numerical techniques require more computational effort than either product

form or approximate techniques because they require solving a set of balance equations for each

possible "population vector"--the vector describing the number of members in each possible class

of active entities. In addition to the computational effort numerical techniques would also require a
large development effort to integrate the preprocessing analysis with the simulation environment.

The final approach is simulative analysis of the network. This approach has several major

drawbacks. Like the numerical techniques, simulative analysis requires finding a solution (running

a simulation) for each possible population vector. In addition, simulative analysis, essentially a

statistical technique, requires additional effort to interpret the statistical significance of results. On

the other hand, simulative analysis has numerous advantages. A simulation can provide much

more information than just the mean network traversal time. As will be described later in this

paper, the entire probability distibution of the network traversal time may be extracted without

additional computational effort. Also, there are no theoretical restrictions on the characteristics of

the network that can be analyzed. Simulative analysis is the easiest to integrate with a simulation

modeling environment.

We have chosen the simulative approach to aggregation. Under this approach, a simulation run

consists of a closed network with a given population vector. A separate run is made for each

possible population vector. If there is only one class of active entities traversing the network, the

population vector is merely a single index (e.g., i) indicating the number of entities. Because the

7

network is closed (Figure 3), each customer immediately returns to the beginning of the network

after completing a traversal of the network. In this way there are always i customers traversing the

network in a given simulation run. The time is recorded for each customer's traversal. Given

sufficient simulation time, a discretized distribution of traversal times is built up for a given

congestion level i. Note that the total traversal time is a sum of both service and waiting times.

After preprocessing, the aggregate network can be modeled in the simulation environment as an

infinite server queue with service time distributions indexed by the number of server; occupied

(Figure 5). The distribution used when i servers are occupied is the discrete distribution resulting

from the network simulation with congestion level i.

servers occupied= 1 2 3

Traversal time dist. = F1 F2 F3

Figure. Infinite Server Queue

The advantage of this simulative approach is that at least an approximate version of the entire
network traversal time distribution is preserved during the aggregation, even when the network

does not satisfy local balance. Further, the network traversal time distribution is indexed by the

state of the network. This state dependence is important, as congestion effects may radically alter

the distribution of service times. As an example, Figure 6 illustrates the traversal time distribution

for a version of the Figure 3 network (with general service time distributions) as the state variable

8

(the number of customers present) is increased. In the case of one customer, the shape of the

distribution is relatively well behaved. As congestion increases, variability and the bimodal shape
of the distributions also increase. Bimodality is a consequence of having two possible paths

through the network, each with its own characteristic affects on the traversing entity. As
congestion increases, the difference in traversal times between the two paths grows steadily larger.

0.-30

........""

Figure. Sample Traversal Time Distributions

Figure 6 dramatically illustrates how, in some applications, one would be ill-advised to use an
"expected value" approach to aggregation, where traversal times are represented by only the mean
value. As congestion increases, the expected value becomes a less meaningful descriptor of

throughput times. For example, in the case of i = 13, the sample mean is approximately 452, a
value with little or no probability mass in its vicinity.

9

III. SOFTWARE IMPLEMENTATION OF THE HIERARCHICAL FRAMEWORK

A prototype of the modular hierarchical simulation framework described in this paper was

developed using the SMALLTALK-80 programming environment (Goldberg and Robson, 1989).
SMALLTALK provides a fully accessible library of object classes; in fact, the entire

SMALLTALK environment is built on these classes. SMALLTALK also provides the classes
necessary to implement the functionality of basic simulations (e.g., event timing and

synchronization, queuing, and resource utilization). Developing the prototype framework required

creating the necessary extensions to the basic class structure. These extensions included

application-specific classes for an airbase logistics problem domain. Figures 7a through 7c
illustrate an overview of the new simulation classes and how they relate to the basic structure.

However, the figures only show those SMALLTALK classes that are part of the direct lineage of

the new classes.

~Object

Ai~

EJ Cm pi'o.Mde by SMA.LT.LK

N..4y w, mhd ds-

eiClass Hierarchy of the Prototype Simulation System

10

Parts

Figure 7b.,, Class Hierarchy or the Prototype Simulation System (Cont)

Eiu~LZClsHierarch of the Nectr Simulator

X11

The active simulation entities are the subclasses of SimulationObject, generally speaking, Parts

and Aircraft. These entities must cycle through sequences of activity networks representing

various operational and maintenance related activities. The logic of the airbase logistics simulation

is illustrated in Figure 8.

I I
anAircraft anAircraft

Enter Refuel
AircraftSimulation

anAircraft anAircraft

Land Takeoff

anAircraft anAircrafttt
Check parts Exit

for failure AircraftSimulation

anAircraft

I nstanciate any Part traverses its

failed Parts aPart repair network
hierarchy

anAi;craftV
Aircraft traverses
its repair network aPart

hierarchy

anAircraft

Replace needed a
parts

anAircraft

Figure. Logic of Airbase Logistics Simulation

12

The classes that provide the structure of the hierarchical framework are TaskNetwork, Arcs,

and TaskNode. Instances of TaskNode are the focal points for simulated activities. As currently

implemented, each node specifies the resources to be used, the length of time involved, and the

possible transitions to succeeding activities. The nodes could also be used to specify logical

conditions on resource usage or transition choices. Instances of Arcs provide the links to

succeeding activities and the associated transition probabilities.

Each instance of TaskNetwork refers to a structured collection of instances of TaskNode and

Arcs. In practice, this is achieved with a pointer to the "root node" of the network. The main

purpose of TaskNetwork is to implement behaviors for network building, traversal, and

information collecting.

Additional implementation details, including object attributes and key methods, may be found in

Appendices A and B.

Network Preprocessing Simulation

Analyzing aggregate network behavior requires collecting data on the simulated network. The

classes needed are the network related classes, specialized versions of existing basic

SMALLTALK simulation classes, and a new persistent data management class, Database. In the

prototype system, only network traversal time data is collected. The previous section of this paper

pointed out the difficulty of describing these times in terms of ordinary probability distributions.

To capture the form and shape of the distribution, an approximate approach is used in which

throughput data is collected in histogram form. Data collection is implemented in a specialized

Histogram class called NetworkHistogram. The Database class provides data persistence and

manages the histogram data associated with each likely level of network congestion. The data for a

particular congestion level is updated each time the Simulation subclass, NetworkSimulation, is

run. The persistent data is then accessible by other simulations through the class

IndexedApproximation, described in the next subsection. NetworkSimulation initializes the

desired network object instances and manages the simulation process during which instances of the

SimulationObject subclass, Entity, traverse the network. Typically, the simulation will be run long

enough to collect data on several thousand traversals.

13

Hierarchical Simulation

To achieve the desired modularity, TaskNetwork has been provided with the same methods and
variables as TaskNode. (If SMALLTALK supported multiple inheritance, the same effect could

have been achieved by inheriting those features directly from TaskNode.) Thus, an instance of

SimulationObject need not distinguish between node and network. Of course, the procedures

activated upon receipt of a generic message will be quite different. In particular, the message

duration: aSimulationObject, when received by an instance of TaskNode, causes the node to return

either a fixed number or a random deviate generated by the probability distribution corresponding

to the node's activity. However, when the message is received by an instance of TaskNetwork, a

complex simulation process is invoked. The object specified by aSimulationObject will now
traverse the receiving task network, returning to the original upper level only after completing the

lower level. The approach places no limits on the levels of nesting of activity networks. An

example of a hierarchy from the airbase logistics problem domain is shown in Figure 9.

xFixR

Figure2. Hierarchy Example

14

Aggregated Networks

This case is the mirror image of the above: rather than having a network appear to the
simulation as a node, the node will appear as a network. The nodes used are members of the
Aggregate class, a subclass of TaskNode. Instances of Aggregate will have a special type of
"dummy" resource and "duration" specified by an instance of the class, IndexedApproximation.

The dummy resource differs from ordinary Resource objects (provided by SMALLTALK) in
that any number of simulation objects may be using them simultaneously. Thus they operate
similarly to an infinite server queue. This provides a way to attach a simulation object to a
"network" for the appropriate duration without precluding other simulation objects from doing so.
This is appropriate in that the network itself is not a limited resource, but merely a conceptual
aggregation of the actual resources.

Externally, instances of IndexedApproximation operate in the same manner as a probability
distribution, that is, sending an instance the message next causes it to return a random deviate
representing the aggregate node's duration (network traversal time). To account for network

congestion, on receipt of next, it will query the dummy resource of that node as to the number of
simulation objects currently being served. This number plus one is the appropriate index number.

The index is passed to an instance of Database, which retrieves the corresponding frequency data
from a file in secondary storage. (The frequency data is stored there during runs of
NetworkSimulation.) The data is then passed to an instance of DiscreteApproximation to generate

the random deviate.

15

REFERENCES

Buchholz, P. (1989). Definition of submodels and classification of aggregates
(Integrated Modelling Support Environment project report, R5.4-1 Version 2). University of
Dortmund.

Chandy, K., Herzog, U., & Woo, L. (1975). Parametric analysis of queuing networks. IBM
Journal of Research & Development. 12,43-49.

Coad, P., & Yourdon, E. (1990). Object-oriented analysis. Englewood Cliffs, NJ: Prentice-
Hall.

Fishwick, P. (1986). Hierarchical reasoning: simulating complex processes over multiple levels of
abstraction (UF-CIS Technical Report TR-86-6). Gainesville, FL: University of Florida,
Computer and Information Sciences Department.

Franta, W. (1977). The Process View of Simulation. Amsterdam: North-Holland.

Garrison, W. (1990). Network 11.5 tutorial - network modeling without programming. In 0.
Balci, R. Sadowski, & R. Nance. (Eds.), Proceedings of the 1990 Winter Simulation Conference
(pp. 132-135). New Orleans, LA: Society for Computer Simulation.

Goldberg, A., & Robson, D. (1989). SMALLTALK-80: the language. Reading, MA: Addison
Wesley.

Marie, R. (1979). An approximate analytical technique for general Queuing networks (IEEE
Transactions on Software Engineering, SE-5 (5)), pp. 530-538.

O'Reilly, J., & Whitford, J. (1990). SLAM II tutorial. In 0. Balci, R. Sadowski, & R. Nance,
(Eds.), Proceedings of the 1990 Winter Simulation Conference (pp. 72-76). New Orleans, LA:
Society for Computer Simulation.

Rothenberg, J., Narain, S., Steeb, R., Hefley, C., & Shapiro, N. (1989). Knowledge-based
simulations: an interim report (RAND Note N-2897-DARPA). Santa Monica, CA: Rand
Corporation.

Taha, H., Taylor, R., & Younis, N. (1990). Simulation and animation with SIMNET II and
ISES. In 0. Balci, R. Sadowski, & R. Nance, (Eds.), Proceedings of the 1990 Winter
Simulation Conference (pp. 99-105). New Orleans, LA: Society for Computer Simulation.

Zeigler, B. (1984). Multifacetted modelling and discrete-event simulation. New York: Academic
Press.

16

Appendix A

Variable Definitions by Object Class

Format:

Class
Class Variables
instance variables

(Class variables will begin with a capital letter; instance variables will not)

Aircraft

currentNode the ID number of the current TaskNode of the aircraft.

neededParts - a Bag containing the names of the aircraft parts needing repair on a
particular aircraft.

Aircraft (i)

AircraftType - identifies the name of the class to which an aircraft belongs.

ClassTurnNetwork - The postflight and preflight aircraft servicing network.

RepairableParts - a Dictionary containing the names of parts that
may need repair and their probability of failure.

Arcs

head - the ID of the TaskNode at the "head" of the arc.

tail - the ID of the TaskNode at the "tail" of the arc.

probability - the probability of the arc being chosen as the traversal path upon
leaving the "tail" TaskNode.

17

Database

file

recordCount

currentIndex

fieldList

recordSize

headerSize

currentRecord

DiscreteApproximation

start - the lower bound of the probability domain.

stop the upper bound of the probability domain.

step - the cell width of the approximation.

data - a "Stream" of frequency values for each cell.

Entity

ClassTaskNetwork - the TaskNetwork to be traversed by the entities.

entryTime - the simulation time at which the entity enters the simulation.

entitylD - the ID number of the entity.

.urrentNode - the node at which the entity currently resides.

IndexedApproximation

prob - random deviate returned to simulation.

resourceType - a member of dummyResourceSet.

18

NetworkHistograrm

resolution - the ratio of cell entries to unit markers in the histogram plot.

sumOfSquares - used to calculate sample standard deviation of network traversal
times.

nument - the number of entities cycling through the network.

serviceMean - the theoretical mean service time (excluding queueing time) for the
entire network.

serviceDev - the theoretical standard deviation of the above.

Network Simulation

statistics contains the network histogram.

nument the number of entities cycling through tC- network.

Parts

currentNode - the ID number of the current task node of the part.

Part(i)

ClassTaskNetwork - the part repair network.

PartType - identifies the name of the class to which a part belongs.

Simulation

dummyResourceSet - a Set of the names of the simulation resources that represent
aggregated networks.

SimulationObject

entitylD - a unique assignable ID code.

19

TaskNetwork

partLocations - a Dictionary that provides the current TaskNode ID
number for each Part ID number.

aRandom - contains the current random number being used for probabilistic
branching in traversing the network.

root - the first TaskNode in a network.

taskID - an ID number to identify a TaskNetwork when it is used as a TaskNode on
another network.

taskType - the name of the simulation Resource used to accomplish the
task; in this case, where the network is a node on another network, the resource will
be 'Network.'

arcsOut - a Set of instances of Arcs that defines the possible temporal paths.

TaskNode

tasklD - an ID number for a node.

taskType - the name of the simulation Resource used to accomplish the task.

duration - the time required to complete a task (may be a value or a
probability distribution).

arcsOut - a Set of instances of Arcs that defines the possible temporal paths.

20

Appendix B

Key Methods by Class

Air craft Si mu I at ion

defineDummyResources - used to specify any aggregated or "dummy" resources in
the simulation model. Uses the statement:

self produce: aDummyResource

There may be three types of these statments: the resource at a dummy node, a
resource representing a network, and a resource representing an aggregated
network.

initialize - this method already exists in Simulation. Here it is modified by inclusion
of the statement:

dummyResourceSet: Set new

Aggregate

newTaskNode - This method specializes the method in the TaskNode superclass to
give the node a "duration" as specified by IndexedApproximation.

newNode -- super newTaskNode.
newNode duration: (IndexedApproximation type: 'Aggregate').
newNode type: 'Aggregate'.
T newNode

Aggregate(i)

new - This method is sent to the class to create an instance of the appropriate
aggregated network. It is a modified version of the "new" method for TaskNetwork.
The aggregated network will consist of a single TaskNode from the subclass,
Aggregate.

aTaskNetwork - super new.
aNode Aggregate newTaskNode.
aNode taskID: '1'.
aTaskNetwork firstTask: aNode.
T aTaskNetwork

21

Entity

startUp." anEntitylD - The "startUp" method in SimulationObject has been modified
to help implement the "recycling" of entities in the TaskNetwork. The modified
method allows a new Entity to appear to the simulation as being the same as the
Entity just leaving the simulation. This happens by recycling the ID number:

entitylD +- anEntitylD

IndexedApproximation

next - as with all members of the system class, ProbabilityDistribution, this
method returns a random deviate of the DiscreteApproximation corresponding to
the appropriate index. The index is obtained by querying the simulation as to the
number of other simulation objects using the resource, "resourceType" (an instance
variable of the IndexedApproximation) as follows:

index <-- Simulation active resourceSet occurrencesOf: (self resourceType)

The message, "next", is then sent to the DiscreteApproximation that corresponds
to index.

NetworkSimulation

defineArrivalSchedule - used to create "nument" number of entities at simulation
time 0:

(I to: nument by: 1)
do: [count I self schedule: [Entity new startUp: count] at: 0]

initialize this method from Simulation has been modified to initialize the
histogram parameters, set nument, and set the TaskNetwork to be traversed.

statistics 4- NetworkHistogram from: astart to: astop by: astep withResolution:
aResolution
nument +- aNumber
Entity initializeWithNetwork: aTaskNetwork

exit: aSimulationObject - this method from Simulation has been modified so a new
SimulationObject is created that is a "clone" of the SimulationObject exiting the
simulation. The cloned SimulationObject enters the simulation at the exact time
the original SimulationObject leaves. The modified method also disables the
collection of traversal time data on the first traversal cycle of the
SimulationObjec to prevent biasing the throughput statistics. The following
statements were added:

(aSimulationObject entryTime) > 0.0
ifTrue: [statistics store: currentTime - aSimulationObject entryTimel

self schedule: [Entity new startUp: (aSimulationObject entitylD)] at: (self time)

22

Simulation

dummyResourceSet/dummyResourceSet: - used to retrieve or set the contents of the
Simulation instance variable, dummyResourceSet.

SimulationObject

acquire: amountofResource: resourceName - this existing method has been modified
to enable the apparent behavior of aggregated resources. When a
SimulationObject attempts to acquire an aggregated resource, the simulation
actually produces another occurrence of that resource:

(Simulation active dummyResourceSet includes: resourceName)
ilfTrue: [Simulation active produce: amountOf: resourceName]

TaskNetwork

duration: aSimulationObject - simulates the traversal of the network by
aSimulationObject and returns the time required to traverse the network.

mean - returns the expected total of the service times during a traversal of the
network

next: aPartlD - returns the next node in the network to be traversed by the part
identified by aPartiD. This may be the result of a probabilistic branching.

variance - returns the variance of the total service time during a traversal of the
network

TaskNode

duration: aSimulationObject - returns a number representing the time required to
use the resource at the node. It may be a fixed number or a random deviate.

mean - the mean of the time required to use the resource at the node. In the case of a
fixed time it returns the fixed number.

variance - the variance of the time required to use the resource at the node. In the
case of a fixed time it returns 0.

23

